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Laplace Transforms in Design and Analysis of Circuits© 

Part 3 - Basic Parallel Circuit Analysis

Simple Two Loop 

In Part 2, Laplace techniques were used to solve for the output in simple series 
reactive circuits. This module will examine the techniques used in 
approaching the solution to two and three loop parallel circuits with reactive 
components.  Parallel circuits that contain a number of loops beyond three 
will not be exampled, as any number of loops can be reduced to two or three 
by the use of Thevinen's or Norton's theorem, or by merely extending the 
procedures developed here.   

Consider the following two loop system:  

Z1

Z2

Z3

Z4

i1 i2
vin vout

Writing the circuit equation for each loop; reveals that there are two equations 
in two unknowns ( 𝑖𝑖1 & 𝑖𝑖2 ) that characterize the circuit. 

22121 )( izizzvin −+=
( ) 2432120 izzziz +++−=

There are several techniques available for solving systems of linear equations 
that have the same number of equations as unknowns, and of those, we will 
use Cramer's Rule for now (If you want a quick refresher on the use of 
Cramer's Rule for solving systems of linear equations, see Appendix A).  
Suppose we have the following values for 1z  through 4z  
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i1 i2

10 5

.5f1f
vout

 
 
Writing the equations for the two loops; 
 

( )∫ −+= dtiiivin 21110  
  tdiidti∫ ∫++−= 221 350  
 
Question?  How was the factor ∫ dti23  developed?   

Since the defining equation for capacitor behavior is 
dt

dv
Ci c

c = , it follows that 

∫= dti
C

v cc
1 . 

 
We can probably reduce the labor (and anguish) if the above two circuit 
equations are converted to their Laplace transforms. Looking at the 
transformed circuit; 
 

i1 i2

10 5

1/s 2/s

 
 
the circuit equations are re-written as; 
 

)(1)(110)( 21 si
s

si
s

svin −





 +=  

)(35)(10 21 si
s

si
s







 ++−=  
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Re-writing these equations as matrices; 
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First, find the determinant. 
 

( )
2

2

2

2

2

04.7.5023550135110.
s

ss
s

ss
sss

Det ++
=

+
=−






 +





 +=  

 
The task is find outv  as a function of the driver, and recognizing that

( )ssisvout
2)()( 2= .   

First we'll find the impulse response to gain an idea of the form of the transient 
response of the circuit.  Because )(2 si  is the only current involved in finding 

)(svout  we need not solve for )(1 si , except to satisfy curiosity.  Solving for )(si s

; 
 

( ) )(
04.7.50.

01

1110

22 s
ss

s
Det
s

s

i=++
=
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and the output voltage response to the current impulse is 
 

( ) 







+
−
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=















++

=
063.

1
637.

107.2
04.7.50

)( 2 sssss
ssvout  

 
in turn then 
 

( )tt
out eetv 637.063.07.)( −− −=      ←  Eq. 1 

 
Indicating that the transient response, for all practical purposes, is ≈ zero at 

67≈t  seconds (the output is less than 1mV - recall that in previous modules, 
6−e  was defined to be about zero). 
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Suppose that a driver of )1sin(. t  is applied as )(tvin . Often parameters are 
chosen, in this case the frequency, to exaggerate some aspect of the response 
for illustration purposes. 
 
Then )(2 si  equals 
 

( ) ( )2222

2
2

22

1.)04.7.(
02.

04.7.50
01.

1.1
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01
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=
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Since 






=

s
sisvout

2)()( 2 , then 

 

( )( ) 222222 1.
83.4

1.
)01(.17.

637.
17.

063.
5

01.04.7.
04.)(

+
+

+
−

+
−

+
≈

+++
=

s
s

ssssss
svout  

 
(if you need a refresher on Partial Fraction Expansion, particularly with 
respect to finding factors on complex denominators, refer to Laplace 
Transforms in Design and Analysis of Circuits© Part 2), and finally: 
 

Eq. 1
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)1sin(.17.)1cos(.5.17.5)( 637.063. tteetv tt
out −+−= −−       ←  Eq. 2 

 

 
 
 
Again, please note that the output contains two distinct components: the 
transient response and the steady state response.  The transient response is the 
time limited contribution of the impulse response (amplitude modified by the 
nature of the driver).  The steady state response has the characteristics of the 
driver and continues until the drive is removed.  All responses will contain 
these two components. 
 

The RLC 
 
Another, and very significant, circuit is the analog of the series RLC network; 
as expected it is a parallel RLC network; often known as a "parallel tank" 
circuit.  Its properties are such that it presents a very high impedance at the 
resonant frequency rendering the circuit very useful in filtering and frequency 
determination applications.  Like other classic circuits this one can also be 
implemented using active components.  However it is an understanding of the 
response that is sought at this time and not the techniques involved in 
mimicking reactive components with active components.  Those design 
techniques will be developed in subsequent modules within this series. 
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Vout
It I1 I21/sC

sL

R

 
                   
                                                              21 iiit +=       
R is the combined DC resistance of the inductor and any circuit resistance/ 
resistors.  By inspection, 
 

RsL
V

i

sCVi

out

c

+
=

=

2

1

 

Since outc VV = , and 𝑖𝑖𝑡𝑡 = 𝑖𝑖1 + 𝑖𝑖2  we can take advantage of that and write the 
circuit equation as  
 

outt V
RsL

sCi 







+
+=

1  

or 
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+
=
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+

=

LC
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out
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Suppose the following circuits exists, and that we wish to know its impulse 
response.  (See Appendix C for a simple but relatively effective current driver) 
 

Vout
It I1 I2

.1s

1

1/.001s

 
 
Assume 𝑖𝑖𝑡𝑡(𝑡𝑡) = 𝛿𝛿(𝑡𝑡).  Putting some flesh to the transfer function 
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( )
( ) ( )

( )( )
( ) 2222222 87.995

07.5087.99
87.995
)5(1000

87.995
551000

1000010
)11(.10000)(

++
+

++
+

=
++

++
=

++
+

=
ss

s
s

s
ss

ssvout  

 
)8787.99sin(1001)87.99sin(07.50)87.99cos(1000)( 555 ottt

out tetetetv +≈+= −−− ←Eq 3 
 

 
 
The tank exhibits a characteristic "ringing" that deteriorates over time in 
accordance with the system time constant.  Task:  identify the two components 
that determine the time constant; what is the theoretical result of a 0 ohm 
resistor?  Question:  is 0 ohm's possible under normal ambient conditions?   
 
It is worth noting the magnitude of the output in response to a )(tδ .  The 
physics of an inductor is expressed as 𝑒𝑒 = 𝐿𝐿 𝑑𝑑𝑖𝑖 𝑑𝑑𝑡𝑡�  and at 𝑡𝑡 = 0, 𝑑𝑑𝑖𝑖 𝑑𝑑𝑡𝑡�   
approaches ∞ in the limit.  We should expect a spike in voltage at t=0.  Parallel 
tanks generate considerable voltage at or very near their resonant frequency 
and, as a designer, one must always bear in mind the consequences of voltage 
spikes to the remaining circuitry.  Generally there are existing techniques to 
mitigate any deleterious results of spikes but they are not considered here, 
 
Suppose this circuit is driven by )110sin(10 tit = , then 
 

( )( )
( ) 2222222 110

)68465)(110(
87.995

11245887.99
)110)(1000010(

)11)(.1100(10000)(
+

−∠
+

++
∠

≈
+++
+

=
sssss

ssV
oo

out  

Ex. 3
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)68110sin(465)11287.99sin(458)( 5 oot

out ttetV −++= −   ←  Eq. 4 
 

 
 
Bear in mind that )( Lji

dt
diLv LL ω== , meaning that the magnitude of LV  is 

directly proportional to the magnitudes of both ω&Li .  The gross effect is that 
considerable voltage can be built across an inductor, which may present a 
hazard to the remaining circuitry.  Of course there are techniques to control 
and/or limit the magnitudes, but that discussion is for a later time. 
 
As an aside, and as a general comment: while considerable effort is 
maintained to monitor the correctness of all the calculations, oft times what 
can go wrong will go wrong.  Therefore, if you discover an error, please do 
not hesitate to contact the company and/or the author. 
 

Three Loop Circuit 
 
Consider the following circuit: 
 

Eq. 4
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Z1

Z2

Z3

Z4

i1 i2
Vin

Z6

Z5

i3

 
 
Writing the loop equations 
 

322121 0)( iizizzvin +−+=  
   34243212 )(0 izizzziz −+++−=  
   3654241 )(00 izzzizi +++−=  
 
Writing the system equations in matrix notation 
 
( )

( )
( ) 
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Writing the determinant using the either the example or the definition 
contained in Appendix A 
 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )654

2
2

2
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424265443221
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Solving for 1i  through 3i  
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( )

( )

.
00000

.
00
0

424

4322

221

3 Det
zzV

Det
z

zzzz
Vzzz

i in

in

−−−++
=

















−
++−

−+

=  

 
Three by three matrices get messy when there are reactive components in the 
circuit, and even messier at greater dimensions. But as long as the 
fundamentals of the matrix solution process is understood, it is recommended 
that you resort to the use of a computer or calculator for solutions to systems 
greater than or equal to 3X3.  Naturally, those aides are not essential, merely 
convenient. 
 
For practice, consider the following circuit: 
 

i1 i2
Vin

i3

5 5 1

1/s 2/s

2s

 
 
The determinant matrix is: 
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22114150002213515
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0115
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collecting terms (courtesy of trusty HP49 - I cannot be sure, but I would guess 
the internal routines use the Newton-Raphson (or variant thereof) method of 
finding the roots). 
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( ) ( )( )
2

22

2

23 958.455.391.5022746550.
s

ss
s

sssDet +++
=

+++
=  

 
Assume we want the impulse response across the inductor.  outv  is then taken 
across the inductor, in that case  
 

sLsivout )(3=  
 

.

020

0351

)(115

)(3 Det
s

ss

sV
ss

si

in

























−







 +−

−





 +

=  

 

( ) ( )( )223 958.455.391.50
2)(

+++
=

ss
vsi in  

 
and 
 

( ) ( )( ) )958)455()391.(958.455.391.50
4

.. 2222
+

+
+

+
=

+++
=

+s
cbs

s
a

ss
svv in

out  

Multiplying both sides by the common denominator 
 
. 08𝑠𝑠 = (𝑎𝑎 + 𝑏𝑏)𝑠𝑠2 + (. 91𝑎𝑎 + .391𝑏𝑏 + 𝑐𝑐)𝑠𝑠 + 1.12𝑎𝑎 + .391𝑐𝑐 
Converting to matrix form 
 

�
1 1 0

. 91 . 391 1
1.12 0 . 391

� �
𝑎𝑎
𝑏𝑏
𝑐𝑐
� = �

0
. 08

0
�  Inverting the 3x3, 

 

�
𝑎𝑎
𝑏𝑏
𝑐𝑐
� = �

. 549 −1.41 1.5

. 451 1.41 −1.54
−.676 1.73 .−.802

� �
0

. 08
0
�  Then multiply 
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�
𝑎𝑎
𝑏𝑏
𝑐𝑐
� = �

−.11
. 11
. 14

�  So  𝑎𝑎 = −.11,𝑏𝑏 = .11 𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐 = .14 

 
we must account for the time constants of cosine factor, hence .14-.11, then 
factor .455 from .11, also 𝜔𝜔𝑑𝑑 must accounted for from the remaining .03 (.14 
-.11) to implement the sine function.  Rounding is done for convenience. 
 
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
1
≈ .11(𝑠𝑠+.455)

(𝑠𝑠+.455)2+.9582
+ .03∗.958

(𝑠𝑠+.455)2+.9582
− .11

𝑠𝑠+.391
   

(𝑣𝑣𝑖𝑖𝑖𝑖(𝑠𝑠) = 1 𝑏𝑏𝑒𝑒𝑐𝑐𝑎𝑎𝑏𝑏𝑠𝑠𝑒𝑒 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝛿𝛿(𝑡𝑡) for finding the impulse response.) 
 
The impulse response is  
 

( ) ( ) tete tte ttf 391.11.958.sin455.03.958.cos455.11.)( −−−+−=       ←   Eq. 5 
 

 
 
Suppose the circuit is driven at a frequency near resonance 
 

1
10
2 +

=
s

Vin  

 
then,  
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Eq. 5
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( ) ( )( )( ) =++++
=

1958.455.391.
8.

222 sss
sVout  

 

( ) ( )( )( ) 1958.)455.(391.1958.455.391.
8.

222222 +
+

+
++

+
+

+
≈

++++
=

s
eds

s
cbs

s
a

sss
sVout  

 
Skipping a step or two, the matrices are 
 

⎣
⎢
⎢
⎢
⎡

1 1 0
. 91 . 39 1
2.13 1 . 391

1
1.3

1.48

0
1

1.3
. 91 . 391 1
1.13 0 . 39

. 44
0

1.48
. 44 ⎦

⎥
⎥
⎥
⎤
*

⎣
⎢
⎢
⎡
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑒𝑒⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0
0
0
. 8
0 ⎦
⎥
⎥
⎥
⎤
 

 
inverting 
 
 

⎣
⎢
⎢
⎡
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑒𝑒⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

. 02 −.05 . 14
1.47 −.83 −.64
. 94
−.49
−.89

. 72

. 89
−.49

−1.41
. 49
. 89

 −.37 
1.25

. 5
−.89
. 49

. 94
−.44
. 85
−.49
−.89⎦

⎥
⎥
⎥
⎤
∗

⎣
⎢
⎢
⎢
⎡

0
0
0
. 8
0 ⎦
⎥
⎥
⎥
⎤
 

 
multiplying 
 

⎣
⎢
⎢
⎡
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑒𝑒⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−.29

1
. 4
−.71

. 4 ⎦
⎥
⎥
⎥
⎤
 

 
So 
 

( ) ( )( )( ) 1
4.71.

958.)455.(
4.

391.
29.

1958.455.391.
8.

222222 +
−

−
++

+
+

+
−

≈
++++ s

s
s

s
ssss

s  

 

( ) ( )( )( ) 1
4.71.

958.)455.(
055.055.4.

391.
29.

1958.455.391.
8.

222222 +
−

−
++
−++

+
+
−

≈
++++ s

s
s

s
ssss

s  

 
𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡(𝑡𝑡) ≈ 𝑒𝑒−.455𝑡𝑡�𝑐𝑐𝑐𝑐𝑠𝑠(. 958𝑡𝑡) − .057𝑠𝑠𝑖𝑖𝑎𝑎(. 958𝑡𝑡)� − .71𝑐𝑐𝑐𝑐𝑠𝑠(𝑡𝑡)+.4sin(𝑡𝑡) − .29𝑒𝑒−.391𝑡𝑡 
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Label the above expression Eq. 6 
 

 
 
The graph of Eq. 6 illustrates the relationship between the impulse, or 
transient, response and the steady state response.  It should be clear that while 
always a factor to be considered, the impulse response is short lived while the 
form of the steady state response mirrors the driver for this case.  Filtering of 
non-sinus inputs will alter the form and amplitude of the output relative to the 
input, and we will cover some of those cases later in the series. 
 
  

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 26 51 76 101 126 151 176

Am
pl

itu
de

Time in increments of .1sec

Eq. 6



15 

 
Transform )(tf  )(sF  

1 K  
s
K  

2 tKe σ−  
σ+s

K  

3  
22 ω

ω
+s

K  

4 )cos( tK ω  
22 ω+s

Ks  

5 )sin( tKe t ωσ−  
( ) 22 ωσ

ω
++s

K  

6 )cos( tKe t ωσ−  ( )
( )( )22 ωσ

σ
++

+
s

sK  

7 )(tδ  1 
           7a* )(tKδ  K  

8 )( atKu −  
s

Ke as−

 

9 )(' tf  )0()( fssF −  
10 ∫ dttf )(  

s
sF )(  

11 )()( tbgtaf +  )()( sbGsaF +  
12 t  

2

1
s

 

13 atte−  
( )2

1
as +

 

 
Table 1 

 
*  K is preserved for practical circuit reasons, not for theoretical reasons as 

∞∗K is approximately equal to ∞  
 

It is very important to understand that to be able transform any )(sF  to an 
)(tf , )(sF  must be reduced to one of the forms so far developed.  If it is not 

in one of these forms it cannot be operated on until it is.  Study the right hand 
side forms, they identify the left hand side.   

 
  

)sin( tK ω
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Appendix A 
Cramer's Rule 

Refresher 
 
This appendix is not intended as a tutorial, but rather as a refresher for those 
that want a reminder of how the process proceeds.   
 
Suppose there is a system of equations representing a simple two loop circuit 
containing two unknowns and two equations, such as 
 

02212

2111

=+
=+

ibia
Vibia in  

 
In the above case 21 & ii  are the unknowns and everything else is known. 
 
Then using the notation of Algebra we can re-write these equations as 
 









=
















02

1

22

11 inV
i
i

ba
ba  

 
In order to solve for the two unknowns, first the determinant (Det.) is found 
by multiplying the elements of left to right diagonal, and then subtracting the 
multiplication of elements on the right to left diagonal. 
 
Det. = 2121 abba −  
 
Next, to find 1i , the rightmost column containing 0&inV  is substituted for the 
column containing 21 & aa . 
 










2

1

0 b
bVin  

 
Then find the determinant of that new matrix. 
 

021 bbVin −  
 
Next divide by the Det., the result is the value of 1i .  So 
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2121

21
1

0
abba

bbV
i in

−
−

=  

 
The term 02b  is zero, and is included only for completeness as the driver in 
the second loop is not always zero. 
 
Finally solve for 2i  by substituting 0&inV  for the column containing 21 & bb . 
 









02

1

a
Va in  

 
and divide by Det. 
 

2121

21
2

0
abba
aVa

i in

−
−

=  

 
Please bear in mind that the second loop may have a driver and therefore the 
left hand side of the describing equation will not be zero.  Also, there is no 
constraint on the matrix elements to be real, in fact in actual circuitry they are 
more than often complex.  Also because the rules of Laplace Transform pairs 
allows addition, the whole set of equations may be written in the 's' domain. 
 
Optional:  For a short discussion of why this technique works, see appendix 
B. 
 
An example; 
 

Z1

Z2

Z3

Z4

i1 i2

Vin

 
 
From the above, 
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)(0

)(

432221

22211

zzzizi

zizziVin

+++−=

−+=
 

 
The determinant is ( )( ) 2

243221 zzzzzz −+++  or 
 
Det. = 4232413121 zzzzzzzzzz ++++  
 

Then ( )
.

02432
1 Det

zzzzV
i in +++
=  

 

and ( )
.

0 21
2 Det

zVi
i in+
=  

 
Assume:  5,10,10 3241 ===== zzzzVin  
 

Then Det. is 275
205

515
=








−

−  

and 

73.
275
200

275
200

510

1 ≅=







 −

=i  

and 

18.
275
50

275
05

1015

2 ≅=








−

=i  

 
Suppose 42 ziVout = , then VVout 8.1=  
 
For a three loop circuit, there will be three equations and three unknowns. 
 

Z1

Z2

Z3

Z4

i1 i2

Vin
Z6

Z5

i3

 
 



19 

The procedure for any matrix greater than a 2x2 as in the above example, is 
extended and modified slightly.  In the case of the three loop circuit there a 
three columns and three rows; 
 

( ) ( ) ( )0322211 izizziVin +−+=  
  ( ) 434322210 zizzzizi −+++−=  
  ( ) ( )6543421 00 zzzizii +++−=  
 
The determinant matrix will be 
 
( )

( )
( )
















++−
−++−

−+

6544

44322

221

0

0

zzzz
zzzzz

zzz
 

 
At this point a modification occurs.  There are three columns, and therefore 
there must be three terms for both the left and right hand diagonals.  A frequent 
crutch that works is to merely copy columns 1 & 2 to the right of the matrix; 
that yields three complete diagonals in each direction.  To extend the rule, an 
nxn matrix requires n diagonals in each direction. 
 
( )

( )
( )

( )
( )

4

432

2

2

21

6544

44322

221

00

0

z
zzz

z
z

zz

zzzz
zzzzz

zzz

−
++

−
−
+

















++−
−++−

−+
 

 
the determinant then is 
 
( )( )( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( )654
2
2

2
421432

424265443221

00

00

zzzzzzzzzz

zzzzzzzzzzzz

++−+−++−

−−+−−++++++
 

 
As an example, suppose that three equations in three unknown are 
 

32

321

21

1555
52050

.51520

ii
iii

ii

+−=−

−+−=
−=

 

 
The matrices are: 
 



20 

















−
=

































−
−−

−

5
0
20

1550
5205

0515

3

2

1

i
i
i

 

 
The determinant is 
 

50
205

515

1550
5205

0515

−
−

−

















−
−−

−
 

 
3750)15)(5)(5()5)(5)(15()0)(20)(0()5)(5)(0()0)(5)(5()15)(20)(15( =−−−−−−−−−+−−+

 

=1i 433.1
3750

1555
5200

0520

=
















−−
−

−

 

 

3.
3750

1550
505

02015

2 =
















−
−−

=i  

 

233.
3750

550
0205
20515

3 −=
















−−
−

−

=i  

 
The minus sign on 3i  merely means that it is flowing in a direction opposite 
to the other two. 
 
For matrices greater than three rows by three columns (3x3), the labor goes 
up significantly, and the use of a calculator such as an HP49 or a computer 
program similar to MATLAB or wxMaxima is very helpful.  However for 
those that enjoy the labor the following rules are offered:   
 
There are other, equally valid techniques from our slide-rule days, such as 
Gaussian Elimination, Matrix Inversion and the use of Minors, but all in all 
once you understand the foundations of the process the use of a good 
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calculator is incredibly labor and error saving. Of course it is the 
understanding of these techniques that form the foundations for the 
programming in the calculator's ROM library. 
 
The determinant is the algebraic sum of all the possible products where: 
 

a. each product has factors of one element, and only one, from each row 
and column 
 

b. a plus sign is assigned to each product if the number of column 
inversions is even, 0 inversions being defined as even. A minus sign is 
assigned to a product that has an odd number of column inversion. 

 
An inversion, by illustration, is that if the natural order of counting is 1234 
and a product is formed from columns 1423 then it contains two inversions; 
to change 1423 to 1234, the 4 must move two places to the right.  4321 has 
six inversions as the 4 moves three places, the 3 moves two places and the 2 
moves one to create 1234. 
 
These rules are simply the procedure used for a 3x3 extended to an nxn.   
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Appendix B 
Foundations 

 
Suppose 
 

QDyCx
PByAx

=+
=+  

 
then AxPBy −=  and 

B
AxPy −

=  

 
then Q

B
AxPDCx =






 −

+  and becomes BQADxDPCBx =−+  

 
which, in turn becomes ( ) DPBQADCBx −=−  
 
or 

BCAD
BQPDx

−
−

=  

 
Using Cramer's rule the matrices for the two initial equations are  
 

BCAD
BQPD

DC
BA
DQ
BP

x
−
−

=



















=  

 
For those with infinite stamina this procedure can be extended to any number 
of equations that possess the same number in unknowns.  But the author, being 
a member of Lazyhood Incorporated, uses mechanical means once the theory 
is established. 
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Appendix C 
Common Base Amplifier 

 
 

Consider the following circuit 
 

E C
B

Re

Vin

Vbe
RloadVcb

Vcc

ie

ic

 
                                            
This circuit consists of an NPN transistor, forward biased emitter to base )( beV  
and reverse biased collector to base ( beV ).  Typically beV  is on the order of 
approximately .7 volts, so the current through eR , is  
  

e

in
e R

V
I

7.−
≈  

 
The physics of the transistor are such that the current through the collector 
and hence through loadR  is always .98-.99 eI  (true within the manufacturers 
operating characteristics range for the particular transistor type).  Therefore 
adjusting inV  adjusts eI , which in turn controls the load current.  In short 
 

ec II 99.≈  
 
Obviously this makes the current through the load utterly dependent on eI , 
which in turn is dependent upon the values chosen for ine VR & .   
 
The above is a very primitive version of a common base amplifier, and design 
considerations of coupling, impedance, bandwidth, emitter resistance, etc., 
have been utterly ignored so as to focus on the current generator effect at the 
collector.   
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The most common point of confusion is that if the collector current is 99% of 
the emitter current, what has happened to ohm's law in the collector to base 
loop.  Nothing actually. Kirchhoff's voltage equation for that loop is  
 

cbloadecc VRIV +≈  
 

As the transistor is active, and is constrained by it's physics, cbV  adjusts to 
accommodate the voltage law.  


